姜余很是欣喜。
这种“二代超级细菌”的作用和培养,恰巧在生物基础知识概论中有详细的介绍。
这种“二代超级细菌”可以在短时间内,分解包括石油和塑料这类有机化合物。
一只五毫升注
的玻璃瓶装满的细菌,可以在2小时内,在密闭的环境中分解超过十吨的石油,或者25立方的塑料。
几乎以
眼可见的速度,吞噬这些石油化合物,并且分解出能够燃烧的氢氧化合物和水,以及少部分的硫矿等矿物质。
通俗的来说也就是甲烷、乙烷、丙烷和丁烷等的混合物,简称石油天然气。
所以,这些废弃塑料和重金属污染物,即是
坏全球生态的一个威胁,也将是姜大邺在全球提高影响力的一个契机。
其实,超级细菌的功用还远不止于此。
“超级细菌”还可以通过基因工程改造成吞噬矿物,吞噬沙子,吞噬盐碱土等品种。
这些改造后的“超级细菌”,可以植
蚯蚓,噬石虫等爬行类昆虫的消化道内。
以后完全可以低成本的生产大量的硅晶体,低成本改造沙漠和盐碱地。
要知道,自然界本身也存在着各种形式的石油烃类化合物的扩散。
因此能降解高分子量烃类化合物的菌有很多种,目前已知200多种。
但绝大多数的降解速率都很低。
无论石油,还是塑料,都是一种成分十分复杂的混合物,由几十,甚至上千种有机化合物组成。
而一种菌往往只能降解一种特定类型的化合物。
所以除了要对高效降解菌的筛选鉴定外,还要考虑菌种的组合。
用菌群去降解石油,这里就有一个麻烦的问题,菌种之间怎样的组合才是最优的组合。
而自然菌种则需要用几年的时间降解石油,质粒容易丢失或转移,遗传稳定
差。
通常一种细菌只能分解石油中的一种烃类。
菌与菌之间存在着各种相互作用,这是一个小的生态系统。
因此还需要研究菌落种群的动态变化,这是一个比较复杂的问题。
系统科技选项里面的“超级细菌”,是经过200多年的努力和验证,给出的最完美答案。
用基因工程培育成功的“超级细菌”却分解石油中的多种烃类化合物,包括最常见的塑料。
(参考第219章)
很巧合的是,地球上的“超级细菌母株”也是纳米比亚嗜硫珠菌。
这是姜余和几个生物科学家在前两年就认定的最好“细菌母株”之一。
只不过,桦国的生物科学比较落后,基因重组手段比较匮乏,所以时至今天,都没有太理想的成果出现。
纳米比亚嗜硫珠菌,被认为是世界上最大的细菌,是普通细菌的300万倍。
它以硫磺为食,这些细菌的种群可以解毒海水。
硫珠菌巨大的体积源于细胞内装着硝酸盐溶
的大泡囊。
在氧气不够用的
况下,这些硝酸盐溶
也可以和硫化氢发生氧化还原反应,生成硫单质。
这种细菌自身携带“化学武器”,在厌氧环境中生存能力极强。
它的吞噬能力也非常强大,最适合作为“超级细菌”的母菌株。
在母菌株中植
降解乙烷、辛烷和癸烷,降解二甲苯,降解萘和分解樟脑等等假单胞茵的不同质粒。
因为,这种细菌的体积,超出一般细菌太多,所以承受质粒的种类更多,更齐全。
由此得到的工程母菌具有超常规的能力,能够同时降解脂肪烃、芳烃、萜和多环芳烃等等烃类化合物。
且降解石油的速度快、效率高,在几个小时内能降解完海上溢油中2/3的烃类。
如果换成大街小巷中的那种塑料废弃物,它们甚至能在更短的时间内消化、分解。